If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+3t-9.5=0
a = 4.9; b = 3; c = -9.5;
Δ = b2-4ac
Δ = 32-4·4.9·(-9.5)
Δ = 195.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{195.2}}{2*4.9}=\frac{-3-\sqrt{195.2}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{195.2}}{2*4.9}=\frac{-3+\sqrt{195.2}}{9.8} $
| 17=-2b-5 | | 15x-6=30+3x | | 4x=75º+x | | 1-11b=-3b | | 42x-20=-3x+25 | | 2x-21=7x+84 | | 2p+8=12-2p | | 2(y-4)+8=12+y | | 4r-4+6=26 | | 38+6w+w+16=180 | | 10=5x+18 | | (4x+19)=(5x+5) | | 9x+61=10x+67 | | 2/3(x-6)=1/6(x+12) | | 3x5=-102x | | x+54+83=180 | | 1.5m-5=23 | | 120+0.30x=50+0.80x | | 78-0.4x=83 | | b-29+78+b-31=180 | | x+54+83=137 | | 5x-7=4+2x=25 | | 3p=1/5 | | (4x+8)=72 | | (10x-11)=(3x-2)=(3x+1) | | 5-2x-8=4x+3 | | 59+p-1+p-50=180 | | (10x-11)=(3x-2)(3x+1) | | -9g=-7g-2g | | 3t+25=5t+13 | | 20+4r=32-r | | 39+2u+u+18=180 |